кто знает как решить это.............
Пусть AD — биссектриса треугольника ABC, и прямая l касается окружностей, описанных около треугольников ADB и ADC в точках M и N соответственно.
Докажите, что окружность, проходящая через середины отрезков BD, DC и MN, касается прямой l.


Аноним: Объясните употребление времен группы Perfect, переведите.
1. This is a very good book, I have just read it with pleasure. 2. He has been absent this week. He has been ill. 3.1 haven't seen you for a long time. Where have you been all this time? 4. We haven't heard about her since 1989. 5. By the beginning of the lecture the laboratory assistant had brought all the necessary diagrams.
Аноним: Помоги пожалуйста

Ответы

Ответ дал: ExPeD25
0

Ответ:

Решение 1.

Обозначим центры окружностей, описанных около треугольников ADB и ADC через O1 и O2, а середины отрезков BD, DC, MN, DO2 и O1O2 — через A1, A2, K, E и O соответственно (см. рис.). Пусть  ∠ BAD =  ∠ CAD =  α . Тогда  ∠ A1O1D =  ∠ A2O2D =  α  (так как половина центрального угла равна вписанному, опирающемуся на ту же дугу). Отрезок OK — средняя линия трапеции (или прямоугольника) O1MNO2, следовательно, OK ⊥ l, и . Заметим, что точки E, O и A2 лежат на одной прямой, так как  ∠ OEO2 +  ∠ O2EA2 =  ∠ O1DO2 +  ∠ O2EA2 =  ∠ O1AO2 + (180° –  ∠ DO2C) = 2 α  + (180° – 2 α ) = 180°, т.е. OK = OE + EA2 = OA2. Аналогично доказывается, что OA1 = OK. Значит, точки A1, A2 и K лежат на окружности с центром O, а так как OK ⊥ l, то эта окружность касается прямой l.

Случай, когда вместо прямой l рассматривает-ся прямая l1, разбирается аналогично.

Решение 2.

Пусть радиусы окружностей, описанных около треугольников ADB и ADC равны R1 и R2. Если эти радиусы различны, то прямая l пересекает линию центров O1O2 в точке O (см. рис.). Пусть OD пересекает окружности в точках B′ и C′, и OA пересекает  ω  в точке A′. При гомотетии H с центром O и коэффициентом  точки C′, D и A переходят в точки D, B′ и A′ соответственно, следовательно,  ∠ DAC′ =  ∠ B′A′D. С другой стороны,  ∠ B′A′D =  ∠ B′AD, поэтому  ∠ B′AD =  ∠ C′AD. А это означает, что точки B′ и C′ совпадают с точками B и C, так как в противном случае один из углов BAD и CAD был бы меньше  α , а другой — больше  α  ( α  =  ∠ B′AD =  ∠ C′AD).

Рассмотрим гомотетию H1 с центром O, переводящую  ω 2 в окружность  ω , проходящую через точку E — середину отрезка MN. Из того, что l проходит через точку O и  ω 2 касается l, следует, что  ω  касается l в точке E. Кроме того, из гомотетичности треугольников ONC и OMD (гомотетия H) следует, что NC || MD. Кроме того, H1(C) = C1, где EC1 || NC. Поэтому EC1 — средняя линия трапеции CNMD, т.е. гомотетия H1 переводит точку C в середину DC. Аналогично, она переводит D в середину отрезка BD. Значит,  ω  проходит через середины отрезков BD и DC.

Если же R1 = R2, то вместо гомотетии следует рассмотреть параллельный перенос на вектор .

Решение 3.

Пусть R1 ≠ R2. Проведем перпендикуляр SO к плоскости  π , содержащей окружности  ω 1 и  ω 2 (см. обозначения в предыдущем решении). Нетрудно понять, что пересечение (наклонного) конуса с вершиной S и основанием  ω 1 и прямого кругового цилиндра с основанием  ω 2 является окружность, равная  ω 2 и лежащая в плоскости  π 1 ||  π . Глядя на рис., заключаем, что ортогональной проекцией на плоскость  π  пересечения конуса и плоскости, равноудаленной от  π  и  π 1 является окружность, проходящая через середины отрезков BD, DC и MN и касающаяся прямой MN.

В случае R1 = R2 вместо конуса следует рассмотреть (наклонный) цилиндр с основанием  ω 1.

Объяснение:

Вас заинтересует