• Предмет: Алгебра
  • Автор: bg8j9nz4rd
  • Вопрос задан 1 год назад

ПООООМОГИИИТЕЕЕ
6cos2x+8sin^2 x-5=0

Приложения:

Ответы

Ответ дал: bebabum20
0

Ответ:

We can simplify the given equation using the trigonometric identity:

sin^2 x + cos^2 x = 1

First, we'll use the identity 6cos2x = 6(1 - sin^2 x) to substitute for cos2x:

6cos2x + 8sin^2 x - 5 = 0

6(1 - sin^2 x) + 8sin^2 x - 5 = 0

6 - 6sin^2 x + 8sin^2 x - 5 = 0

2sin^2 x + 1 = 0

Now, we'll isolate sin^2 x by moving the constant term to the other side:

2sin^2 x = -1

Dividing both sides by 2:

sin^2 x = -1/2

Since sin^2 x is always non-negative, there is no solution to this equation.

Therefore, the given equation 6cos2x+8sin^2 x-5=0 has no real solutions.

Объяснение:

Ответ дал: ulevskaam19
0

Ответ:

все на фото аооалалалалалалккла

Приложения:
Вас заинтересует