Ответы
Ответ дал:
2
Відповідь:
Пояснення:Для знаходження похідної функції у=х²sinx скористаємося правилом добутку та ланцюговим правилом диференціювання:
Правило добутку: (f*g)' = f'g + fg'
Ланцюгове правило: (f(g(x)))' = f'(g(x))*g'(x)
У цьому випадку, f(x) = x² та g(x) = sin(x). Тоді ми можемо записати:
у = f(x)g(x) = x²sin(x)
y' = (f(x)*g(x))' = f'(x)*g(x) + f(x)*g'(x)
де f'(x) та g'(x) позначають похідні від f(x) та g(x) відповідно.
Тож, застосуємо правило диференціювання функції f(x) = x² та g(x) = sin(x):
f'(x) = 2x
g'(x) = cos(x)
Підставляючи значення, отримаємо:
y' = 2xsin(x) + x²cos(x)
Таким чином, похідна функції y=х²sinx дорівнює 2xsin(x) + x²cos(x).
aarr04594:
"ланцюговим правилом диференціювання" поясніть
Ланцюгове правило диференціювання - це правило, яке дозволяє обчислити похідну функції, що складається з функцій однієї або більше змінних.Якщо функція складається з функцій "внутрішньої" та "зовнішньої" змінної, то ланцюгове правило диференціювання каже, що похідна функції дорівнює добутку похідних зовнішньої та внутрішньої функцій.
Ланцюгове правило диференціювання є корисним при обчисленні похідних складних функцій.
Ланцюгове правило диференціювання є корисним при обчисленні похідних складних функцій.
Прикол в тому, що тут немає внутрішньої та зовнішньої функції.
Зідрали з нейросєті, хоч би прочитали що там написано.
Ответ дал:
1
Відповідь:
Правило добутку: (uv)'=u'v+uv'
у=х²sinx,
у'=(х²)'sinx+x²(sinx)'
=2xsinx+x²cosx
здравствуйте. если Вы прочитали это сообщение, ответьте пожалуйста. нужна помощь по геометрии (площадь, периметр прямоугольника, треугольника и тд). Помогите пожалуйста
Вас заинтересует
1 год назад
1 год назад
1 год назад
1 год назад
3 года назад