• Предмет: Математика
  • Автор: darinacibula7
  • Вопрос задан 1 год назад

СРОЧНО!!!! ДАЮ 40 БАЛОВ!!!!Записуємо 10-значне число. Кожну цифру обираємо
випадковим чином із сукупності {1, 2, 3, 4, 5, 6, 7, 8}. Знайти
ймовірність подій:
A В числі є 4 та 8
B Друга цифра більше 3
C В числі рівно 1 четвірка та рівно 3 двійки
D В числі 3 непарні цифри
E Друга та шоста цифри однакові

Ответы

Ответ дал: agapilega
0

Для розв'язання цього завдання використовуйте поняття ймовірності.

A) Ймовірність події "В числі є 4 та 8":

- Є дві цифри, які задовольняють цій умові (4 і 8).

- Всього можливо вибрати 8 цифр.

Таким чином, ймовірність події A дорівнює 2/8 або 1/4.

B) Ймовірність події "Друга цифра більше 3":

- Можливі варіанти для другої цифри: 4, 5, 6, 7, 8.

- Всього можливо вибрати 8 цифр.

Отже, ймовірність події B дорівнює 5/8.

C) Ймовірність події "В числі рівно 1 четвірка та рівно 3 двійки":

- Щоб вибрати рівно 1 четвірку, є 1 спосіб.

- Щоб вибрати рівно 3 двійки, є способів С(7, 3) (кількість способів вибрати 3 двійки з 7 доступних цифр).

- Решта цифр (4) можуть бути однієї з шести інших цифр (1, 2, 3, 5, 6, 7).

- Загальна кількість можливих комбінацій: 7! / (3! * 1!) = 35 (основано на принципі перестановок і комбінацій).

Таким чином, ймовірність події C дорівнює (1 * 35 * 6/8) = 15/4 або 3.75.

D) Ймовірність події "В числі 3 непарні цифри":

- Є 4 непарні цифри: 1, 3, 5, 7.

- Всього можливо вибрати 8 цифр.

Отже, ймовірність події D дорівнює 4/8 або 1/2.

E) Ймовірність події "Друга та шоста цифри однакові":

- Першу цифру можна вибрати будь-якою з 8 доступних.

- Другу цифру повинна бути такою ж як і перша, тобто 1/8.

Отже, ймовірність події E дорівнює 1/8.

Отже, відповіді:

A) 1/4

B) 5/8

C) 3.75 (або 15/4)

D) 1/2

E) 1/8

Вас заинтересует