Помогите срочно пожалуйста !!!! Диагонали параллелограмма abcd пересекаются в точке О.Докажите что сумма площадей треугольников aob и cod равна сумме площадей треугольников aod и boc. Помогите!!!!!
Ответы
Ответ дал:
0
Дан параллелограмм АВСD. ВD и АС - диагонали. Точка пересечения диагоналей делит их пополам. Обозначим АО=ОС=п, ВО=ОD=m. Площади треугольников можно вычислить по формуле S=1/2ab*sinα (половина произведения сторон на синус угла между ними). Тогда :
S(АОВ)=1/2mn*sinα S(COD)=1/2mn*sinα
S(AOD)=1/2mn*sinβ S(BOC)=1/2mn*sinβ
Так как синусы углов α и β равны, то получим
S(AOB)+S(COD)=1/2mn*sinα+1/2mn*sinα=mn*sinα
S(AOD)+S(BOC)=1/2mn*sinα+1/2mn*sinα=mn*sinα
Получили, что суммы площадей указанных треугольников равны
mn*sinα=mn*sinα
S(АОВ)=1/2mn*sinα S(COD)=1/2mn*sinα
S(AOD)=1/2mn*sinβ S(BOC)=1/2mn*sinβ
Так как синусы углов α и β равны, то получим
S(AOB)+S(COD)=1/2mn*sinα+1/2mn*sinα=mn*sinα
S(AOD)+S(BOC)=1/2mn*sinα+1/2mn*sinα=mn*sinα
Получили, что суммы площадей указанных треугольников равны
mn*sinα=mn*sinα
Ответ дал:
0
Спасибо огромное
Ответ дал:
0
Помоги мне еще с 1м вопросом по геометрии
Вас заинтересует
2 года назад
2 года назад
8 лет назад
8 лет назад
10 лет назад
10 лет назад