• Предмет: Алгебра
  • Автор: pronevna
  • Вопрос задан 2 года назад

От пристани по течению реки одновременно
отправились галера и плот. Галера, пройдя
x километров, развернулась и поплыла обратно к
пристани. В четырёх километрах от неё она встретила
плот. Доплыв до пристани, галера снова развернулась и
догнала плот в пяти километрах от пристани.Галера
всегда плыла с одинаковой скоростью и
разворачивалась моментально. Найдите x.

Ответы

Ответ дал: Vasily1975
6

Ответ: 20 км.

Объяснение:

Пусть v1 км/ч и v2 км/ч - скорость галеры и скорость плота. Пусть t1 ч - время от начала движения до момента, когда галера встретила плот. За время t1 галера по условию прошла расстояние x+x-4=2*x-4 км, а плот - расстояние 4 км. Так как (2*x-4)/v1=t1 и 4/v2=t1, то отсюда следует уравнение (2*x-4)/v1=4/v2. Пусть t2 ч - время от начала движения до момента, когда галера догнала плот. За время t2 по условию галера прошла путь 2*x+5 км, а плот - расстояние 5 км. Так как (2*x+5)/v1=t2 и 5/v2=t2, то отсюда следует уравнение (2*x+5)/v1=5/v2. Таким образом получена система двух уравнений:

(2*x-4)/v1=4/v2

(2*x+5)/v1=5/v2

Разделив второе уравнение на первое, приходим к уравнению (2*x+5)/(2*x-4)=5/4, которое приводится к уравнению 2*x-40=0. Отсюда x=20 км.

Вас заинтересует