• Предмет: Геометрия
  • Автор: rada20102
  • Вопрос задан 10 лет назад

через середину D стороны AB треугольника ABC проведены прямые перпендикулярные биссектрисам углов ABC и BAC .Эти прямые пересекают стороны AC и BC в точках M и K соответственно . Докажите , что AM=BK

Ответы

Ответ дал: Hrisula
0
Рассмотри треугольники ВКD и АМD. 
В них основания перпендикулярны биссектрисам, а биссектрисы перпендикулярны по условию основаниям -
в Δ ВКD основанию КD,
в Δ АМD основанию МD. 
Следовательно, биссектрисы являются в этих треугольниках и высотами. Треугольник, в котором биссектриса является одновременно высотой - равнобедренный
Треугольники ВКD и АМD равнобедренные. 
По условию ВD=АD. 
Следовательно, боковые стороны этих треугольников равны, отсюда ВК=АМ. 
Приложения:
Ответ дал: rada20102
0
Спасибо большое
Вас заинтересует